metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[aqua(μ_2 -4,4'-bipyridine)(μ_5 -4,4'oxvdibenzene-1.2-carboxvlato)dizinc(II)] 4,4'-bipyridine hemisolvate]

Pei-Xiu Yin, Zhao-Ji Li, Xin-Yi Cao, Ye-Yan Qin and Yuan-Gen Yao*

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@fjirsm.ac.cn

Received 23 March 2007; accepted 4 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.048; wR factor = 0.099; data-to-parameter ratio = 12.6.

Α new three-dimensional metal-organic framework, $\{[Zn_2(C_{16}H_6O_9)(C_{10}H_8N_2)(H_2O)] \cdot 0.5C_{10}H_8N_2\}_n$, is a porous three-dimensional bipyridyl-pillared framework with rhombic channels built from two-dimensional helical double layers of Zn-DETA [DETA is 4,4'-oxydi(benzene-1,2- carboxylate)] with the 4,4'-bipyridyl guest molecules locked in the cavities through short $O-H \cdots N$ hydrogen bonds.

Related literature

For related literature, see: Cheng et al. (2006); Chui et al. (1999); Dietzel et al. (2006); Fujita et al. (1994); He et al. (2006); Hong (2005); Li et al. (1999); Sun et al. (2006); Wang et al. (2006); Xiao et al. (2006); Zheng et al. (2006); Tao et al. (2000).

Experimental

Crystal data $[Zn_2(C_{16}H_6O_9)(C_{10}H_8N_2)-$ (H₂O)]·0.5C₁₀H₈N₂ $M_r = 725.28$ Monoclinic, $P2_1/n$ a = 10.9516 (4) Å b = 15.1202 (5) Åc = 16.5498 (4) Å

 $\beta = 92.0630 \ (10)^{\circ}$ $V = 2738.71 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 1.82 \text{ mm}^-$ 203 (2) K

$$h = 293 (2) \text{ K}$$

 $0.28 \times 0.25 \times 0.20 \text{ mm}$

Data collection

```
Siemens SMART CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.606, \ T_{\max} = 0.695
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.08	refinement
5211 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
415 parameters	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
2 restraints	

13598 measured reflections

 $R_{\rm int} = 0.054$

5211 independent reflections

3672 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1W−H1WA···O6 ^{iv}	0.82	1.95	2.770 (4)	173
$O1W-H1WB\cdots N3$	0.85	2.14	2.863 (6)	143

Symmetry code: (iv) -x, -y, -z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: XPREP (Siemens, 1996); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the State Key Basic Research and Development Plan of China (001CB108906), the YIF (2005 J060) and NSF (2006 J0015) of Fujian Province, the Major Special Foundation of Fujian Province (2005HZ1027), (2005HZ01-1), and the Fund of Fujian Key Laboratory of Nanomaterials (2006 L2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG3085).

References

- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, J. W., Zhang, J., Zheng, S. T., Zhang, M. B. & Yang, G. Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.
- Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.
- Dietzel, P. D. C., Panella, B., Hirscher, M., Blom, R. & Fjellvag, H. (2006). Chem. Commun. pp. 959-961.
- Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152
- He, J. R., Wang, Y. L., Bi, W. H., Zhu, X. D. & Cao, R. (2006). J. Mol. Struct. 787. 63-68.
- Hong, J. (2005). J. Mol. Struct. 752, 166-169.
- Li, H., Eddaoudi, M., Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1996). XPREP, SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sun, H. L., Ma, B. Q., Gao, S. & Batten, S. R. (2006). Cryst. Growth Des. 6, 1261-1263
- Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043-2044..
- Wang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2006). Chem. Eur. J. 12, 2680-2691
- Xiao, D. R., Wang, E. B., An, H. Y., Li, Y. G., Su, Z. M. & Sun, C. Y. (2006). Chem. Eur. J. 12, 6528-6541.
- Zheng, Y. Z., Tong, M. L., Zhang, W. X. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 6310-6314

Acta Cryst. (2007). E63, m2258 [doi:10.1107/S1600536807016893]

Poly[[aqua(μ_2 -4,4'-bipyridine)(μ_5 -4,4'-oxydibenzene-1,2-carboxylato)dizinc(II)] 4,4'-bipyridine hemisolvate]

P.-X. Yin, Z.-J. Li, X.-Y. Cao, Y.-Y. Qin and Y.-G. Yao

Comment

The rational design and synthesis of extended metal-organic frameworks (MOFs) is important and amongst the new classes of solid functional materials has applications in magnetism, as optical materials, in catalysis and gas absorption/separation, but also by their novel diverse molecular architectures and topologies (Zheng *et al.*, 2006; Sun *et al.*, 2006; Fujita *et al.*, 1994; Dietzel *et al.*, 2006). In this family, metal carboxylates have attracted much attention: among the numerous ligands employed in this field, by far the most common are the rigid aromatic polycarboxylate ligands including 1,2-benzenedicarboxylate, 1,3,5-benzenetricarboxylate and 1,2,4,5-benzenetetracarboxylate, which have been extensively utilized in the fabrication of extended MOFs with interesting structures and desired properties (Cheng *et al.*, 2006; Chui *et al.*, 1999; Li *et al.*, 1999). However, reports on MOFs based on flexible polycarboxylate ligands have been relatively scarce. Against this background, we have selected a flexible divergent carboxylic acid 3,3',4,4'-diphenyl ether-tetracarboxylic acid (H₄DETA), to construct new complexes with the cooperativity of an auxiliary bpy ligand as a rigid organic spacer. The title compound, (I), was obtained under hydrothermal conditions as a pale yellow solid in good yield.

There are two crystallographically independent Zn centers in the asymmetric unit (Fig. 1). The Zn1 center has a distorted tetrahedral coordination geometry being defined by three carboxylate atoms from three different DETA ligands with Zn—O distances from 1.942 (3) to 1.975 (3) Å, and a N atom (Zn1—N = 2.045 (3) Å) from a bpy ligand occupying the 4t h site, whereas the Zn2 center is coordinated by four carboxylate atoms from two distinct DETA ligands Zn—O 2.008 (3) to 2.099 (3) Å, a longer Zn—O 2.373 (4) Å, Zn—O_{aqua} 2.180 (3) Å and one bipy N atom Zn—N at 2.086 (4) Å, providing a highly distorted octahedral coordination polyhedron (with two O sites at symmetry related positions). The Zn—O and Zn—N distances at Zn2 are slightly longer than those at Zn1 but all values are comparable with those reported for Zn related complexes (Tao *et al.*, 2000; Wang *et al.*, 2006; He *et al.*, 2006; Hong 2005). There is also a unique DETA ligand in the fundamental unit of (I), which is bent about the central ether bond with a dihedral angle between the two phenyl rings of 72.28 (2)°. The V-shaped DETA favors the formation of helices as authenticated by BTDC (where BTDC is 3,3',4,4'-benzophenone tetracarboxylate). (Hong 2005; Xiao *et al.*, 2006). It serves as a tetra-connector with its four carboxylate arms in three coordination modes, monodentate, bidentate and *syn*—anti bridging bidentate, linking Zn atoms into 2-D (two-dimensional) helical double layer subunit, (Fig. 2). There are no Zn…Zn interactions.

A feature of (I) is the two-dimensional helical double layers which are further pillared up by bpy ligands resulting in a 3-D host–guest structure: the neutral 3-D host architecture of Zn—DETA—bpy, which consists of one-dimensional rhombus channels along the [100] direction (Fig. 3), encapsulates the guest bpy ligands *via* hydrogen bonding interactions between the guest bpy ligands and the nearest coordinated water molecules (O_1W — H_1W ···N3, 2.859 (6) Å).

Experimental

A mixture of $Zn(CH_3CO_2)_2 \cdot 2H_2O$ (0.120 g, 0.55 mmol), 4,4'-oxyphthalic anhydride (0.081 g, 0.26 mmol), 4,4'-bpy (0.088 g, 0.56 mmol) in a molar ratio of about 2.1:1:2.1 and water (15 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated to 453 K for 76 h. When the reactor was cooled to room temperature over a period of 3 d, yellow prismatic single crystals suitable for X-ray diffraction were obtained.

Refinement

All H atoms, except for the aqua H atoms, were positioned geometrically and refined using a riding model [C—H = 0.93 Å] and $U_{iso}(H) = 1.2U_{eq}(C)$. The water H atoms were located from difference maps and refined isotropically, with O—H distances fixed at 0.82/0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 2. View of the two-dimensional helical double layer in (I).

$Poly[[aqua(\mu_2-4,4'-bipyridine)(\mu_4-4,4'-oxydibenzene-1,2-\ carboxylato)dizinc(II)] \ 4,4'-bipyridine \ hemisolvate]$

Crystal data

 $[Zn_2(C_{16}H_6O_9)(C_{10}H_8N_2)(H_2O)] \cdot 0.5C_{10}H_8N_2$ $F_{000} = 1468$
 $M_r = 725.28$ $D_x = 1.759 \text{ Mg m}^{-3}$

 Monoclinic, $P2_1/n$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$

 Hall symbol: -P 2yn
 Cell parameters from 4772 reflections $\theta = 1.8-25.7^{\circ}$

b = 15.1202 (5) Å	$\mu = 1.82 \text{ mm}^{-1}$
c = 16.5498 (4) Å	T = 293 (2) K
$\beta = 92.0630 \ (10)^{\circ}$	Prism, yellow
$V = 2738.71 (15) \text{ Å}^3$	$0.28 \times 0.25 \times 0.20 \text{ mm}$

Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer	5211 independent reflections
Radiation source: fine-focus sealed tube	3672 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
T = 293(2) K	$\theta_{\text{max}} = 25.7^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.606, T_{\max} = 0.695$	$k = -18 \rightarrow 18$
13598 measured reflections	$l = -20 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 5.3897P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{max} < 0.001$
5211 reflections	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
415 parameters	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
2 restraints	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

Zn1	0.28659 (5)	0.39722 (3)	0.03206 (3)	0.02325 (14)
Zn2	-0.10394 (5)	0.35096 (3)	-0.13285 (3)	0.02633 (15)
O1W	-0.2490 (3)	0.3177 (2)	-0.22115 (19)	0.0378 (8)
H1WA	-0.2298	0.2733	-0.2462	0.057*
H1WB	-0.2648	0.3551	-0.2583	0.057*
01	0.0277 (3)	0.3752 (2)	-0.04076 (17)	0.0335 (8)
02	0.1330 (3)	0.3517 (2)	0.07326 (18)	0.0320 (7)
O3	-0.2645 (3)	0.49931 (19)	0.03977 (18)	0.0319 (8)
O4	-0.2214 (3)	0.4210 (2)	-0.06792 (18)	0.0374 (8)
O5	0.0825 (3)	-0.0796 (2)	0.38851 (18)	0.0323 (8)
O6	0.1656 (3)	-0.1681 (2)	0.29850 (19)	0.0379 (8)
O7	-0.0057 (3)	-0.2528 (2)	0.1830 (2)	0.0473 (10)
08	0.1323 (4)	-0.1990 (3)	0.1029 (2)	0.0599 (11)
09	-0.1372 (3)	0.1490 (2)	0.22898 (18)	0.0388 (8)
N1	-0.0411 (3)	0.4590 (2)	-0.1978 (2)	0.0270 (9)
N2	0.1499 (3)	0.8058 (2)	-0.4527 (2)	0.0266 (9)
N3	-0.2168 (5)	0.3922 (4)	-0.3780 (3)	0.0637 (14)
C1	-0.1547 (4)	0.2161 (3)	0.1711 (3)	0.0311 (11)
C2	-0.0578 (4)	0.2483 (3)	0.1292 (3)	0.0291 (11)
H2B	0.0197	0.2242	0.1377	0.035*
C3	-0.0761 (4)	0.3176 (3)	0.0734 (2)	0.0216 (9)
C4	-0.1928 (4)	0.3543 (3)	0.0637 (2)	0.0223 (9)
C5	-0.2867(4)	0.3236 (3)	0.1104 (3)	0.0299 (11)
H5	-0.3627	0.3510	0.1062	0.036*
C6	-0.2696(4)	0.2530 (3)	0.1631 (3)	0.0326 (11)
H6	-0.3340	0.2311	0.1923	0.039*
C7	0.0348(4)	0.3511 (3)	0.0313(3)	0.0235(10)
C8	-0.2258(4)	0.3211(3) 0.4302(3)	0.0075 (3)	0.0225(10)
C9	-0.0858(4)	0.0700 (3)	0.2056 (3)	0.0280 (11)
C10	-0.0280(4)	0.0212 (3)	0.2669 (3)	0.0296 (11)
H10	-0.0210	0.0444	0.3189	0.036*
C11	0.0193(4)	-0.0620(3)	0.2513(3)	0.0236(10)
C12	0.0193(1) 0.0088(4)	-0.0963(3)	0.1728(3)	0.0230(10) 0.0273(10)
C13	-0.0484(5)	-0.0449(3)	0.1120(3)	0.0275(10) 0.0357(12)
H13	-0.0554	-0.0673	0.0596	0.043*
C14	-0.0945(4)	0.0380 (3)	0.1275 (3)	0.0345(12)
H14	-0.1309	0.0716	0.0862	0.0313(12)
C15	0.0944(4)	-0.1088(3)	0.0002	0.0263(10)
C16	0.0591(4)	-0.1880(3)	0.5100(3)	0.0205(10) 0.0389(13)
C17	0.0301(3)	0.1000(3)	-0.2140(3)	0.0367(12)
H17	0.1326	0.4700 (3)	-0.1935	0.0307 (12)
C18	0.1320	0.4294	-0.2603(3)	0.0410(13)
H18	0.1155 (5)	0.5354 (5)	-0.2608	0.0410 (13)
C10	0.1305	0.5451	-0.2000 (2)	0.049
C19	-0.0867(4)	0.0000(3)	0.2323(2)	0.0241(10)
U20 H20	-0.1453	0.5301 (5)	-0.2015	0.0301 (12)
C21	-0.1433	0.0000	-0.2262(2)	0.045°
U21	-0.1202(3)	0.5192(3)	-0.2203(3)	0.0554 (12)
п21 С22	-0.2019	0.3133	-0.2159	0.042^{+}
C22	0.2286 (5)	0./506(3)	-0.4162(3)	0.0451 (14)

H22	0.3112	0.7563	-0.4265	0.054*
C23	0.1937 (5)	0.6853 (3)	-0.3639 (3)	0.0460 (14)
H23	0.2527	0.6488	-0.3397	0.055*
C24	0.0727 (4)	0.6734 (3)	-0.3469 (3)	0.0268 (10)
C25	-0.0089 (4)	0.7326 (3)	-0.3832 (3)	0.0374 (12)
H25	-0.0918	0.7287	-0.3731	0.045*
C26	0.0329 (4)	0.7973 (3)	-0.4344 (3)	0.0358 (12)
H26	-0.0235	0.8369	-0.4573	0.043*
C27	-0.2418 (6)	0.4675 (5)	-0.4165 (4)	0.073 (2)
H27	-0.3186	0.4923	-0.4107	0.088*
C28	-0.1606 (6)	0.5114 (4)	-0.4650 (4)	0.0627 (18)
H28	-0.1836	0.5640	-0.4904	0.075*
C29	-0.0460 (5)	0.4770 (4)	-0.4753 (3)	0.0437 (14)
C30	-0.0191 (6)	0.3989 (4)	-0.4357 (4)	0.0646 (18)
H30	0.0573	0.3728	-0.4403	0.077*
C31	-0.1056 (7)	0.3594 (4)	-0.3892 (4)	0.074 (2)
H31	-0.0852	0.3062	-0.3640	0.089*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0235 (3)	0.0229 (3)	0.0233 (3)	0.0029 (2)	0.0008 (2)	-0.0003 (2)
Zn2	0.0308 (3)	0.0257 (3)	0.0228 (3)	0.0013 (2)	0.0042 (2)	0.0018 (2)
O1W	0.035 (2)	0.0387 (19)	0.040 (2)	0.0004 (15)	0.0028 (16)	-0.0032 (16)
01	0.0298 (19)	0.051 (2)	0.0194 (17)	-0.0076 (15)	-0.0007 (14)	0.0065 (14)
O2	0.0225 (18)	0.0423 (19)	0.0310 (17)	-0.0011 (15)	-0.0006 (14)	0.0051 (15)
O3	0.044 (2)	0.0240 (17)	0.0278 (17)	0.0096 (15)	0.0028 (15)	0.0020 (14)
O4	0.046 (2)	0.046 (2)	0.0207 (17)	0.0228 (17)	0.0052 (15)	0.0053 (15)
O5	0.0323 (19)	0.0406 (19)	0.0237 (17)	0.0031 (15)	-0.0011 (14)	-0.0015 (14)
O6	0.037 (2)	0.0361 (19)	0.040 (2)	0.0130 (16)	-0.0106 (16)	-0.0065 (15)
O7	0.045 (2)	0.0231 (18)	0.073 (3)	0.0018 (16)	-0.020 (2)	-0.0029 (18)
08	0.075 (3)	0.060 (3)	0.046 (2)	0.022 (2)	0.012 (2)	-0.007 (2)
09	0.057 (2)	0.0313 (18)	0.0287 (18)	0.0116 (17)	0.0087 (16)	0.0111 (15)
N1	0.033 (2)	0.025 (2)	0.023 (2)	-0.0009 (17)	0.0020 (17)	0.0011 (16)
N2	0.026 (2)	0.026 (2)	0.029 (2)	-0.0028 (17)	0.0012 (17)	0.0047 (17)
N3	0.070 (4)	0.071 (4)	0.051 (3)	-0.008 (3)	0.010 (3)	0.000 (3)
C1	0.038 (3)	0.025 (2)	0.030 (3)	0.001 (2)	0.007 (2)	0.007 (2)
C2	0.025 (3)	0.025 (2)	0.037 (3)	0.007 (2)	0.002 (2)	0.004 (2)
C3	0.025 (3)	0.023 (2)	0.018 (2)	0.0019 (19)	0.0005 (18)	0.0011 (18)
C4	0.023 (2)	0.019 (2)	0.025 (2)	0.0032 (19)	0.0013 (18)	0.0013 (19)
C5	0.021 (3)	0.031 (3)	0.038 (3)	0.009 (2)	0.007 (2)	0.006 (2)
C6	0.025 (3)	0.032 (3)	0.041 (3)	0.000 (2)	0.009 (2)	0.007 (2)
C7	0.022 (2)	0.021 (2)	0.027 (3)	0.0039 (19)	0.002 (2)	-0.001 (2)
C8	0.012 (2)	0.026 (2)	0.029 (3)	0.0018 (18)	0.0020 (19)	0.0027 (19)
C9	0.026 (3)	0.017 (2)	0.041 (3)	0.0009 (19)	0.005 (2)	0.005 (2)
C10	0.034 (3)	0.024 (2)	0.031 (3)	-0.002 (2)	-0.003 (2)	0.001 (2)
C11	0.023 (2)	0.020 (2)	0.027 (2)	-0.0007 (19)	-0.0024 (19)	0.0027 (19)
C12	0.025 (3)	0.020 (2)	0.037 (3)	-0.0017 (19)	-0.002 (2)	0.002 (2)

C13	0.044 (3)	0.032 (3)	0.030 (3)	-0.001 (2)	-0.006 (2)	0.000 (2)
C14	0.040 (3)	0.026 (3)	0.037 (3)	-0.001 (2)	-0.004 (2)	0.007 (2)
C15	0.021 (2)	0.025 (2)	0.033 (3)	-0.007 (2)	-0.001 (2)	-0.002 (2)
C16	0.046 (3)	0.037 (3)	0.033 (3)	0.009 (3)	-0.020 (3)	-0.007 (2)
C17	0.026 (3)	0.038 (3)	0.046 (3)	0.006 (2)	-0.001 (2)	0.019 (2)
C18	0.026 (3)	0.044 (3)	0.053 (3)	-0.002 (2)	-0.001 (2)	0.020 (3)
C19	0.025 (3)	0.024 (2)	0.023 (2)	-0.001 (2)	0.0007 (19)	0.0003 (19)
C20	0.032 (3)	0.027 (3)	0.050 (3)	0.006 (2)	0.014 (2)	0.013 (2)
C21	0.030 (3)	0.033 (3)	0.044 (3)	0.008 (2)	0.012 (2)	0.008 (2)
C22	0.022 (3)	0.049 (3)	0.065 (4)	-0.002 (2)	0.006 (3)	0.028 (3)
C23	0.033 (3)	0.046 (3)	0.058 (4)	0.007 (3)	0.004 (3)	0.029 (3)
C24	0.032 (3)	0.022 (2)	0.026 (2)	-0.001 (2)	0.002 (2)	-0.0018 (19)
C25	0.026 (3)	0.042 (3)	0.045 (3)	-0.001 (2)	0.009 (2)	0.015 (2)
C26	0.030 (3)	0.034 (3)	0.043 (3)	0.008 (2)	0.005 (2)	0.012 (2)
C27	0.048 (4)	0.101 (6)	0.071 (5)	-0.001 (4)	-0.002 (4)	0.015 (4)
C28	0.053 (4)	0.079 (5)	0.055 (4)	0.003 (4)	-0.013 (3)	0.022 (3)
C29	0.055 (4)	0.050 (3)	0.025 (3)	-0.002 (3)	-0.004 (2)	-0.007 (2)
C30	0.082 (5)	0.050 (4)	0.064 (4)	0.012 (3)	0.024 (4)	0.008 (3)
C31	0.111 (6)	0.049 (4)	0.065 (4)	0.005 (4)	0.035 (4)	0.002 (3)

Geometric parameters (Å, °)

Zn1—O2	1.962 (3)	C5—C6	1.388 (6)
Zn1—O3 ⁱ	1.975 (3)	С5—Н5	0.9300
Zn1—O5 ⁱⁱ	1.942 (3)	С6—Н6	0.9300
Zn1—N2 ⁱⁱⁱ	2.045 (3)	C9—C14	1.380 (6)
Zn2—N1	2.086 (3)	C9—C10	1.388 (6)
Zn2—O1	2.092 (3)	C10-C11	1.389 (6)
Zn2—O4	2.008 (3)	С10—Н10	0.9300
Zn2—O7 ^{iv}	2.099 (3)	C11—C12	1.399 (6)
Zn2—O8 ^{iv}	2.373 (4)	C11—C15	1.513 (6)
Zn2—O1W	2.179 (3)	C12—C13	1.402 (6)
Zn2—C16 ^{iv}	2.554 (5)	C12—C16	1.506 (6)
O1W—H1WA	0.8200	C13—C14	1.379 (6)
O1W—H1WB	0.8486	С13—Н13	0.9300
O1—C7	1.246 (5)	C14—H14	0.9300
O2—C7	1.260 (5)	C16—Zn2 ^{iv}	2.554 (5)
O3—C8	1.254 (5)	C17—C18	1.380 (6)
O3—Zn1 ⁱ	1.975 (3)	С17—Н17	0.9300
O4—C8	1.258 (5)	C18—C19	1.383 (6)
O5—C15	1.278 (5)	C18—H18	0.9300
O5—Zn1 ^v	1.942 (3)	C19—C20	1.381 (6)
O6—C15	1.233 (5)	C19—C24	1.489 (6)
O7—C16	1.278 (6)	C20—C21	1.381 (6)
O7—Zn2 ^{iv}	2.099 (3)	C20—H20	0.9300
O8—C16	1.235 (6)	C21—H21	0.9300
O8—Zn2 ^{iv}	2.373 (4)	C22—C23	1.376 (6)

О9—С9	1.381 (5)	C22—H22	0.9300
O9—C1	1.404 (5)	C23—C24	1.377 (6)
N1—C17	1.326 (6)	С23—Н23	0.9300
N1—C21	1.331 (6)	C24—C25	1.387 (6)
N2—C22	1.330 (6)	C25—C26	1.384 (6)
N2—C26	1.334 (6)	С25—Н25	0.9300
N2—Zn1 ^{vi}	2.045 (3)	C26—H26	0.9300
N3—C27	1.328 (8)	C27—C28	1.388 (8)
N3—C31	1.334 (8)	С27—Н27	0.9300
C1—C6	1.378 (6)	C28—C29	1.375 (8)
C1—C2	1.378 (6)	C28—H28	0.9300
C2—C3	1.405 (6)	C29—C30	1.379 (7)
С2—Н2В	0.9300	C29—C29 ^{vii}	1.491 (11)
C3—C4	1.398 (6)	C30—C31	1.377 (8)
C3—C7	1.509 (6)	С30—Н30	0.9300
C4—C5	1.388 (6)	С31—Н31	0.9300
C4—C8	1.513 (6)		
O5 ⁱⁱ —Zn1—O2	116.70 (13)	O9—C9—C10	115.8 (4)
$O5^{ii}$ —Zn1— $O3^{i}$	109.63 (13)	C9—C10—C11	120.6 (4)
$O2$ —Zn1— $O3^i$	113.51 (13)	C9—C10—H10	119.7
O5 ⁱⁱ —Zn1—N2 ⁱⁱⁱ	107.27 (14)	C11—C10—H10	119.7
O2—Zn1—N2 ⁱⁱⁱ	107.57 (14)	C10—C11—C12	119.3 (4)
O3 ⁱ —Zn1—N2 ⁱⁱⁱ	100.73 (13)	C10—C11—C15	119.2 (4)
O4—Zn2—N1	95.29 (14)	C12—C11—C15	121.1 (4)
O4—Zn2—O1	87.45 (13)	C11—C12—C13	118.8 (4)
N1—Zn2—O1	90.38 (13)	C11—C12—C16	123.1 (4)
O4—Zn2—O7 ^{iv}	166.27 (14)	C13—C12—C16	118.0 (4)
N1—Zn2—O7 ^{iv}	98.40 (14)	C14—C13—C12	121.7 (4)
$O1$ — $Zn2$ — $O7^{iv}$	91.34 (13)	C14—C13—H13	119.1
O4—Zn2—O1W	90.86 (13)	С12—С13—Н13	119.1
N1—Zn2—O1W	94.67 (13)	C13—C14—C9	118.7 (4)
O1—Zn2—O1W	174.81 (12)	C13—C14—H14	120.6
O7 ^{iv} —Zn2—O1W	89.13 (12)	C9—C14—H14	120.6
O4—Zn2—O8 ^{iv}	107.94 (14)	O6—C15—O5	124.5 (4)
N1—Zn2— $O8^{iv}$	156.04 (14)	O6—C15—C11	119.7 (4)
$O1$ —Zn2— $O8^{iv}$	96.31 (13)	O5-C15-C11	115.6 (4)
$O7^{iv}$ —Zn2— $O8^{iv}$	58.59 (14)	O8—C16—O7	122.3 (5)
$O1W$ — $Zn2$ — $O8^{iv}$	79.54 (13)	O8—C16—C12	120.6 (5)
O4—Zn2—C16 ^{iv}	136.67 (17)	O7—C16—C12	117.1 (5)
N1— $Zn2$ — $C16^{iv}$	127.79 (17)	08—C16—Zn2 ^{iv}	67.5 (3)
O1—Zn2—C16 ^{iv}	95.69 (14)	O7—C16—Zn2 ^{iv}	54.9 (2)
$O7^{iv}$ —Zn2—C16 ^{iv}	29.90 (16)	C12—C16—Zn2 ^{iv}	171.5 (4)
O1W—Zn2—C16 ^{iv}	82.18 (13)	N1—C17—C18	122.3 (4)
$O8^{iv}$ —Zn2—C16 ^{iv}	28.74 (15)	N1—C17—H17	118.9

Zn2—O1W—H1WA	109.5	C18—C17—H17	118.9
Zn2—O1W—H1WB	117.2	C17—C18—C19	120.9 (5)
H1WA—O1W—H1WB	103.2	C17—C18—H18	119.6
C7—O1—Zn2	131.5 (3)	C19—C18—H18	119.6
C7—O2—Zn1	122.5 (3)	C20-C19-C18	116.1 (4)
C8—O3—Zn1 ⁱ	116.1 (3)	C20-C19-C24	121.6 (4)
C8—O4—Zn2	129.6 (3)	C18—C19—C24	122.3 (4)
$C15-O5-Zn1^{v}$	117.9 (3)	C21—C20—C19	119.9 (4)
C16—O7—Zn2 ^{iv}	95.2 (3)	C21—C20—H20	120.1
C16—O8—Zn2 ^{iv}	83.8 (3)	С19—С20—Н20	120.1
C9—O9—C1	118.8 (3)	N1—C21—C20	123.2 (4)
C17—N1—C21	117.5 (4)	N1—C21—H21	118.4
C17—N1—Zn2	122.7 (3)	C20—C21—H21	118.4
C21—N1—Zn2	119.7 (3)	N2—C22—C23	123.1 (5)
C22—N2—C26	116.7 (4)	N2—C22—H22	118.4
C22—N2—Zn1 ^{vi}	119.1 (3)	C23—C22—H22	118.4
C26—N2—Zn1 ^{vi}	124.3 (3)	C22—C23—C24	120.9 (5)
C27—N3—C31	115.1 (6)	С22—С23—Н23	119.5
C6—C1—C2	121.7 (4)	C24—C23—H23	119.5
C6—C1—O9	117.4 (4)	C23—C24—C25	116.0 (4)
C2C1O9	120.7 (4)	C23—C24—C19	121.2 (4)
C1—C2—C3	120.0 (4)	C25—C24—C19	122.9 (4)
C1—C2—H2B	120.0	C26—C25—C24	120.0 (4)
С3—С2—Н2В	120.0	С26—С25—Н25	120.0
C4—C3—C2	118.6 (4)	C24—C25—H25	120.0
C4—C3—C7	124.1 (4)	N2-C26-C25	123.3 (4)
C2—C3—C7	117.1 (4)	N2-C26-H26	118.3
C5—C4—C3	119.8 (4)	С25—С26—Н26	118.3
C5—C4—C8	115.4 (4)	N3—C27—C28	124.2 (7)
C3—C4—C8	124.7 (4)	N3—C27—H27	117.9
C6—C5—C4	121.4 (4)	С28—С27—Н27	117.9
С6—С5—Н5	119.3	C29—C28—C27	119.8 (6)
С4—С5—Н5	119.3	С29—С28—Н28	120.1
C1—C6—C5	118.3 (4)	С27—С28—Н28	120.1
С1—С6—Н6	120.8	C28—C29—C30	116.4 (5)
С5—С6—Н6	120.8	C28—C29—C29 ^{vii}	122.0 (7)
O1—C7—O2	123.2 (4)	C30—C29—C29 ^{vii}	121.6 (7)
O1—C7—C3	121.1 (4)	C31—C30—C29	119.8 (6)
O2—C7—C3	115.6 (4)	С31—С30—Н30	120.1
O3—C8—O4	122.7 (4)	С29—С30—Н30	120.1
O3—C8—C4	116.6 (4)	N3—C31—C30	124.5 (6)
O4—C8—C4	120.6 (4)	N3—C31—H31	117.7
C14—C9—O9	123.4 (4)	С30—С31—Н31	117.7
C14—C9—C10	120.8 (4)		

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) -*x*+1/2, *y*-1/2, -*z*-1/2; (iv) -*x*, -*y*, -*z*; (v) -*x*+1/2, *y*-1/2, -*z*+1/2; (vi) -*x*+1/2, *y*+1/2, -*z*+1/2; (vi) -*x*+1/2, *y*+1/2, -*z*+1/2; (vi) -*x*, -*y*+1, -*z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1WA···O6 ^{iv}	0.82	1.95	2.770 (4)	173
O1W—H1WB…N3	0.85	2.14	2.863 (6)	143
Symmetry codes: (iv) $-x, -y, -z$.				

Fig. 2

